248 research outputs found

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    Kinetically constrained spin models on trees

    Full text link
    We analyze kinetically constrained 0-1 spin models (KCSM) on rooted and unrooted trees of finite connectivity. We focus in particular on the class of Friedrickson-Andersen models FA-jf and on an oriented version of them. These tree models are particularly relevant in physics literature since some of them undergo an ergodicity breaking transition with the mixed first-second order character of the glass transition. Here we first identify the ergodicity regime and prove that the critical density for FA-jf and OFA-jf models coincide with that of a suitable bootstrap percolation model. Next we prove for the first time positivity of the spectral gap in the whole ergodic regime via a novel argument based on martingales ideas. Finally, we discuss how this new technique can be generalized to analyze KCSM on the regular lattice Zd\mathbb{Z}^d.Comment: Published in at http://dx.doi.org/10.1214/12-AAP891 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Mixing length scales of low temperature spin plaquettes models

    Full text link
    Plaquette models are short range ferromagnetic spin models that play a key role in the dynamic facilitation approach to the liquid glass transition. In this paper we perform a rigorous study of the thermodynamic properties of two dimensional plaquette models, the square and triangular plaquette models. We prove that for any positive temperature both models have a unique infinite volume Gibbs measure with exponentially decaying correlations. We analyse the scaling of three a priori different static correlation lengths in the small temperature regime, the mixing, cavity and multispin correlation lengths. Finally, using the symmetries of the model we determine an exact self similarity property for the infinite volume Gibbs measure.Comment: 33 pages, 9 figure

    Smoothening of Depinning Transitions for Directed Polymers with Quenched Disorder

    Full text link
    We consider disordered models of pinning of directed polymers on a defect line, including (1+1)-dimensional interface wetting models, disordered Poland--Scheraga models of DNA denaturation and other (1+d)-dimensional polymers in interaction with columnar defects. We consider also random copolymers at a selective interface. These models are known to have a (de)pinning transition at some critical line in the phase diagram. In this work we prove that, as soon as disorder is present, the transition is at least of second order: the free energy is differentiable at the critical line, and the order parameter (contact fraction) vanishes continuously at the transition. On the other hand, it is known that the corresponding non-disordered models can have a first order (de)pinning transition, with a jump in the order parameter. Our results confirm predictions based on the Harris criterion.Comment: 4 pages, 1 figure. Version 2: references added, minor changes made. To appear on Phys. Rev. Let

    Spatial correlations in the relaxation of the Kob-Andersen model

    Full text link
    We describe spatio-temporal correlations and heterogeneities in a kinetically constrained glassy model, the Kob-Andersen model. The kinetic constraints of the model alone induce the existence of dynamic correlation lengths, that increase as the density ρ\rho increases, in a way compatible with a double-exponential law. We characterize in detail the trapping time correlation length, the cooperativity length, and the distribution of persistent clusters of particles. This last quantity is related to the typical size of blocked clusters that slow down the dynamics for a given density.Comment: 7 pages, 6 figures, published version (title has changed

    Universality for one-dimensional hierarchical coalescence processes with double and triple merges

    Full text link
    We consider one-dimensional hierarchical coalescence processes (in short HCPs) where two or three neighboring domains can merge. An HCP consists of an infinite sequence of stochastic coalescence processes: each process occurs in a different "epoch" and evolves for an infinite time, while the evolutions in subsequent epochs are linked in such a way that the initial distribution of epoch n+1n+1 coincides with the final distribution of epoch nn. Inside each epoch a domain can incorporate one of its neighboring domains or both of them if its length belongs to a certain epoch-dependent finite range. Assuming that the distribution at the beginning of the first epoch is described by a renewal simple point process, we prove limit theorems for the domain length and for the position of the leftmost point (if any). Our analysis extends the results obtained in [Ann. Probab. 40 (2012) 1377-1435] to a larger family of models, including relevant examples from the physics literature [Europhys. Lett. 27 (1994) 175-180, Phys. Rev. E (3) 68 (2003) 031504]. It reveals the presence of a common abstract structure behind models which are apparently very different, thus leading to very similar limit theorems. Finally, we give here a full characterization of the infinitesimal generator for the dynamics inside each epoch, thus allowing us to describe the time evolution of the expected value of regular observables in terms of an ordinary differential equation.Comment: Published in at http://dx.doi.org/10.1214/12-AAP917 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the study of jamming percolation

    Full text link
    We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing'' rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing'' requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing'' requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensional versions of the knights-like models.Comment: 13 pages, 18 figures; Spiral model does satisfy property

    Hierarchical pinning models, quadratic maps and quenched disorder

    Full text link
    We consider a hierarchical model of polymer pinning in presence of quenched disorder, introduced by B. Derrida, V. Hakim and J. Vannimenius in 1992, which can be re-interpreted as an infinite dimensional dynamical system with random initial condition (the disorder). It is defined through a recurrence relation for the law of a random variable {R_n}_{n=1,2,...}, which in absence of disorder (i.e., when the initial condition is degenerate) reduces to a particular case of the well-known Logistic Map. The large-n limit of the sequence of random variables 2^{-n} log R_n, a non-random quantity which is naturally interpreted as a free energy, plays a central role in our analysis. The model depends on a parameter alpha>0, related to the geometry of the hierarchical lattice, and has a phase transition in the sense that the free energy is positive if the expectation of R_0 is larger than a certain threshold value, and it is zero otherwise. It was conjectured by Derrida et al. (1992) that disorder is relevant (respectively, irrelevant or marginally relevant) if 1/2<alpha<1 (respectively, alpha<1/2 or alpha=1/2), in the sense that an arbitrarily small amount of randomness in the initial condition modifies the critical point with respect to that of the pure (i.e., non-disordered) model if alpha is larger or equal to 1/2, but not if alpha is smaller than 1/2. Our main result is a proof of these conjectures for the case alpha different from 1/2. We emphasize that for alpha>1/2 we find the correct scaling form (for weak disorder) of the critical point shift.Comment: 26 pages, 2 figures. v3: Theorem 1.6 improved. To appear on Probab. Theory Rel. Field

    Effective Constraints and Physical Coherent States in Quantum Cosmology: A Numerical Comparison

    Full text link
    A cosmological model with a cyclic interpretation is introduced, which is subject to quantum back-reaction and yet can be treated rather completely by physical coherent state as well as effective constraint techniques. By this comparison, the role of quantum back-reaction in quantum cosmology is unambiguously demonstrated. Also the complementary nature of strengths and weaknesses of the two procedures is illustrated. Finally, effective constraint techniques are applied to a more realistic model filled with radiation, where physical coherent states are not available.Comment: 32 pages, 25 figure
    corecore